The effects of diminazene aceturate on systemic blood pressure in clinically healthy adult dogs

K E Joubert, F Kettner, R G Lobetti and D M Miller

ABSTRACT

Diminazene aceturate is a commonly used antibabesial agent. It has been postulated that diminazene may induce a decrease in blood pressure and exacerbate the hypotension presented in dogs with babesiosis. This study was undertaken to assess the effect of diminazene aceturate on the blood pressure of healthy dogs. Six healthy German shepherd dogs between 18 and 24 months of age with a mean weight of 30.4 ± 2.75 kg were used. Blood pressure was directly measured at the following time intervals: −5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 90 and 120 minutes after treatment with diminazene aceturate (4.2 mg/kg) intramuscularly. No statistical difference (P > 0.05) was found in blood pressure between any of the time intervals. An increase in heart rate was seen 5 minutes after the administration of diminazene aceturate but no change in blood pressure was evident. This study concluded that diminazene aceturate in its current formulation with antipyrine does not alter blood pressure in healthy adult dogs.

Key words: antibabesial drug, Babesia, blood pressure, canine, diamidines, diminazene aceturate.

INTRODUCTION

Babesia canis is a common tick-transmitted intracellular protozoan parasite of dogs in South Africa. Approximately 11 % of dogs presented to the Onderstepoort Veterinary Hospital have babesiosis. The drugs most commonly used to treat babesiosis are aromatic diamidines (diminazine aceturate) or imidocarb diproprionate. In a South African survey, diminazene was the preferred antibabesial by 88 % of respondents, with 41 % of respondents reporting the use of antipyrine, which is dosed at 5.24 mg/kg, whereas intramuscular diminazene is dosed at 4.2 mg/kg the antipyrine as a stabiliser. When diminazene aceturate is formulated with an antihistaminase effect and that an increase in serum histamine occurred following its administration of diminazene aceturate. Fussgänger and Bauer suggested, in an unsubstantiated statement, that diamidines caused hypotension in man.

The only other report of hypotension following the administration of diminazene aceturate is by Fussgänger and Bauer of a decrease in blood pressure of 40–80 mm Hg following the intravenous administration of 0.6–2.2 mg/kg diminazene aceturate. Fussgänger and Bauer also cited a personal communication by Evans that 2 mg/kg diminazene aceturate administered intramuscularly to humans did not alter blood pressure. Bamgbose indicated that a decrease in blood pressure did occur in dogs following the administration of diminazene aceturate by referring to an ‘in press’ article by himself that has apparently not appeared in print.

In rats it has been shown that a plasma concentration of 400 μg/ml of diminazene aceturate caused a decrease in blood pressure while at 100 μg/ml it had no effect on blood pressure. Blaschko et al. showed that diamidines had an antihistaminase effect and that an increase in serum histamine occurred following its administration. Steinmann et al. showed in rats that a blood concentration of 0.25–25 μg/ml diminazene aceturate had no effect on blood pressure, whereas intravenous diminazene aceturate had a transient decrease in blood pressure in rats. In camels, intramuscular diminazene aceturate had no effect on blood pressure, whereas intravenous administration caused a transient decrease in blood pressure.

From the literature it is evident that diminazene aceturate may cause a decrease in blood pressure and that this is probably dependent on the route of administration and dose. This article reports the effect of the intramuscular administration of diminazene aceturate on blood pressure in dogs.
MATERIALS AND METHODS
This study was approved by the Animal Use and Care Committee of the Faculty of Veterinary Science, University of Pretoria, and the South African Police Services. Six (3 intact males, 2 castrated males, and 1 intact female) German shepherd dogs between 18 and 24 months of age with a mean weight of 30.4 ± 2.75 kg were used in this study. A sample size of 4 was calculated based on a decrease in mean blood pressure of 30 mm Hg (from 110 to 80 mm Hg) with a power of 0.9, a standard deviation of 15 and a $P < 0.05$ (SigmaStat, Jandel Corporation, Chicago). All dogs had not been treated for babesiosis within the last three months prior to commencement of the study.

On the day of the treatment a 20G catheter (Jelco, Johnson & Johnson, Halfway House) was aseptically placed in the dorsal pedal artery and secured into position with tape. Every effort was made to make the dogs comfortable. After placement of the catheter, the dogs were allowed to relax for 5 minutes before calibration samples were taken. This sample was excluded from the analysis of results as it was used to ensure that the system was functional and allowed the dogs more time to become accustomed to the test procedure. Ten minutes was allowed before any readings were recorded. All the dogs assumed sternal recumbency for the duration of the study and the blood pressure transducer was adjusted to the point of the shoulder. If movement artefacts were seen during the recording of blood pressure, recording was stopped until a stable baseline was achieved. Blood pressure was monitored using a tension strain gauge (ProPaq EL80, Propaq Protocol Systems, Beaverton, Oregon). The blood pressure transducer was zeroed and calibrated to a standard mercury column at 0, 50, 100 and 200 mm Hg. The transducer was recalibrated between patients and the drift was no more than 4 %. The blood pressure line was continuously flushed with heparin-saline (5 ml/hr, 5 IU/ml) (Heparin, Novo-Nordisk). After establishing baseline blood pressures, 4.2 mg/kg diminazene aceturate (Berenil, Intervet South Africa, Isando) was administered intramuscularly into the biceps femoris muscle. The blood pressure and heart rate were recorded at the following time intervals: -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 90 and 120 minutes after treatment. At each time interval, 5 values for heart rate, systolic, diastolic and mean blood pressure were recorded, and the mean of these values was used in the statistical analysis.

Data was tabulated in a spreadsheet (Excel, Microsoft Corporation, Redmond).

Statistical analysis was performed with SigmaStat (Jandel Corporation) and SigmaPlot (SPSS Incorporated, Chicago). The readings recorded for -5 and 0 time intervals were combined for the baseline reading. All data were compared to the baseline reading. Descriptive statistics were used to describe the data. Repeated measures analysis of variance with Tukey’s test were used to test for statistical differences. Statistical significance was set at $P < 0.05$.

RESULTS
The mean dose of diminazene aceturate administered was 4.25 ± 0.04 mg/kg. Three readings were lost (two in one animal and one in another) due to catheter occlusion in one instance and two due to disruption of the non-compliant tubing. The heart rate and blood pressure are graphically displayed in Figs 1 and 2. Apart from a tendency for an increase in heart rate 5 minutes after the administration of diminazene aceturate (from 94.8 ± 14.7 to 107.7 ± 21.5), no statistical difference ($P > 0.05$) was observed at any time. Blood pressure remained fairly constant until the last 30 minutes of the study when it tended to increase while heart rate decreased, but again no statistical difference was evident. Baseline blood pressure and heart rates were no different from those recorded during an earlier study on the same population of dogs.

The standard deviation of mean arterial blood pressure was 7.7–16.1 mm Hg, with exception of the 120-minute interval when it was 19.5 mm Hg. The sample size was appropriate to test the effect of diminazine aceturate on blood pressure. The power of this study was 0.916 based on the sample size of 6 and change in blood pressure of 30 mm Hg, standard
deviation of 15 and a $P < 0.05$. The power to detect a 20 mm Hg change in blood pressure was 0.743.

DISCUSSION

Hypotension has been reported to occur in both severe and complicated babesiosis prior to treatment. Thus, any aggravation of this hypotension by treatment may induce shock in compromised patients. As diminazene acetate has been implicated in causing hypotension, this may be a realistic threat in the treatment of patients with babesiosis. This study showed that diminazene acetate did not induce a significant reduction ($P > 0.05$) in blood pressure following intramuscular administration in clinically healthy dogs.

The intravenous administration of diminazene acetate has been shown to cause hypotension. Clinically, the intravenous administration of diminazene acetate should be avoided and the manufactures recommend only intramuscular administration. A number of reports indicate that the intramuscular administration of diminazene acetate is not associated with hypotension. Our results concur with these findings.

Although the sample size was small, statistically there should have been enough animals to demonstrate a decrease in mean blood pressure below 80 mm Hg (our cut off point of clinical hypotension) in this study. Our sample size was not large enough to detect a smaller decrease in blood pressure. A smaller decrease in blood pressure is unlikely to result in a significant clinical effect. The sample population may have had an influence on our results. The rise in heart rate at the 5-minute interval may have been related to intramuscular administration of diminazene acetate and the discomfort associated with this. The catheter was flushed after a series of readings to ensure patency. The blood pressure transducer was calibrated to standard mercury column at start up and between patients and the drift was small.

The readings that were lost as result of catheter occlusion and disruption of the non-compliant tubing occurred during the 30- and 35-minute intervals. This would have occurred after the concentration of diminazene acetate peaked before 20 minutes post-administration. If any changes in blood pressure were due to peak serum concentration they would have still been evident from the results. Peak plasma concentration 20 minutes after the administration of 4.2 mg/kg diminazene acetate was 1.69 ± 0.65 μg/ml below the concentrations that have been reported to affect blood pressure by Arowola. The duration of 120 minutes from administration allowed for more than an 80% clearance of the drug from the central compartment. All studies reporting a decrease in blood pressure following intravenous administration have reported the effect to follow the administration of diminazene acetate and to have returned to normal with in 60 minutes. This study should have had the sensitivity to detect these changes.

This study has indicated that diminazene acetate with its stabiliser antipyrene has a minimal effect on blood pressure in healthy dogs. It is not evident from this study if diminazene acetate would alter blood pressure in patients suffering from babesiosis. Babesiosis is a disease that by definition meets the criteria of sepsis. A number of pathological processes are known to occur in sepsis that may influence blood pressure and shock. A study should be conducted to assess the effect of diminazene acetate on blood pressure in clinically affected patients in relation to their normal management.

ACKNOWLEDGEMENTS

This study would not have been possible without the support of the staff and officers of the SAPS Veterinary Service and the SAPS Animal Hospital, Roodeplaat. We would like to thank Senior Superintendent H Strydom for his support and enthusiasm for the project.

REFERENCES

8. Fussgänger R, Bauer F, circle 1,2 1962 Berenil®, a new chemotherapeutic agent in veterinary medicine. Data from the Chemotherapeutic and the Parasitological Laboratory of Farbeverke Hoechst, Germany