The resurgence of trypanosomosis in Botswana

S P Sharma, T C Losho, M Malau, K G Mangate, K B Linchwe, W Amanfu and T K Motsu

ABSTRACT
No sleeping sickness or nagana cases have been reported in Botswana since 1985. In view of several confirmed clinical cases of nagana and reports of heavy bovine mortality, a parasitological survey was conducted to determine the prevalence of trypanosome infection in cattle in Maun and Shakawe areas of Ngamiland district. Wet blood films, buffy coat and Giemsa-stained thick and thin blood smears were used to detect trypanosomes in animals. Overall, trypanosome infection rate was 15.98%, with 5.94% and 27.29% in Maun and Shakawe respectively. The urgent need to combat trypanosomosis in Ngamiland, particularly in the Shakawe area, is highlighted, and a 3-phase integrated tsetse control strategy for this disease problem is discussed.

Key words: anaemia, Botswana, cattle, haematocrit, nagana, Ngamiland, tsetse fly resurgence, trypanosomosis.

African trypanosomosis, commonly known as nagana in animals and sleeping sickness in humans, continues to be a serious threat in over 10 million km2 of sub-Saharan Africa. In southern Africa, trypanosomosis is also a significant animal health problem that has a profound impact on sustainable rural development and economic growth. The disease is transmitted between animals mainly by blood-sucking tsetse flies (Glossina morsitans centralis), which are confined to the Okavango Delta and the associated Kwando/Linyati River system in the Ngamiland and Chobe districts of Botswana.

Neither sleeping sickness nor nagana has been reported in Botswana since 1985. This is largely due to concerted efforts to eradicate tsetse flies by the Tsetse Control Division (TCD) of the Department of Animal Health and Production. In November 1999 and the first quarter of the year 2000, several clinical cases of nagana among cattle from Ngamiland were confirmed at the National Veterinary Laboratory, Private Bag 0014, Maun, Botswana. Owing to clotting and/or haemolysis of 11 blood samples, wet blood films and buffy coats could not be examined. However, thick and thin blood smears of 7 such animals were examined microscopically. Trypanosomes were detected in 74 animals by using all 4 techniques, whereas 50, 70 and 95 animals were diagnosed positive by 3, 2, and 1 of the laboratory techniques respectively. Although direct demonstration of trypanosomes in the infected animals and the techniques used in this investigation provided conclusive proof of infection, these techniques have been reported not to be as sensitive as some of the recently-introduced techniques such as AG-ELISA and polymerase chain reaction (PCR). Parasitological techniques cannot be used to detect latent trypanosome infection as most of the field infections are not associated with patent parasitaemia. New technologies such as...
AG-ELISA and PCR, with some improvement, are likely to revolutionise the diagnosis of trypanosomosis in animals, humans and tsetse flies. However, according to a report, the sensitivity of parasitological and PCR techniques was approximately the same in detecting Trypanosoma vivax in cattle.

Mean per cent haematocrit values of trypanosomosis-positive and negative cases in Maun were 20.87 ± 0.16 (SE) and 29.95 ± 0.18 (SE) respectively. In Shakawe, these were 21.17 ± 0.16 (SE) and 30.85 ± 0.24 (SE) in positive and negative cases respectively. There was a significant reduction \(\left(P < 0.05 \right) \) in the haematocrit values in the trypanosome-affected animals that corresponds with the observations of others. The decrease in the haematocrit values indicating anaemia in animals with trypanosomosis is reported to be due to increased breakdown of erythrocytes during the development of parasitaemia. Several mechanisms have been described as responsible for the destruction of erythrocytes, which include haemolysins and enzymes, fever, complement and trypanosomal antigen produced by trypanosomes.

Morphologically, trypanosome parasites identified during this survey were predominantly Trypanosoma brucei (52.5%), followed by Trypanosoma congolense (36.2%) and Trypanosoma vivax (11.3%). We did not attempt to differentiate between human and animal subspecies of T. brucei. More research is needed to identify trypanosome species using available molecular markers and isoenzyme characteristics.

Some animals suspected of trypanosomosis in 16 cattle crush-pens had reportedly received treatment with diminazene aceturate before this survey. The crush-pens were Shashe, Maphane, Komkog, Maun West, Matsebe I, Kandalangodi, Etshe 6, Tubu and Gumare in the Maun veterinary district and Seronga, Xhao, Guinitsoga, Ndorotsha, Eretsha, Beesha and Teekae in the Shakawe veterinary district. Berenil has been shown to have a limited prophylactic action against trypanosomosis. It is difficult to know whether the administration of diminazine aceturate to cattle might have influenced the prevalence rate of trypanosome infection recorded during this survey.

Based on the results of the present survey, an overall prevalence rate of 15.98% in Ngamiland and a significantly higher trypanosome infection rate of 27.29% in Shakawe in particular is a cause for concern. The Department of Animal Health and Production under the Ministry of Agriculture introduced an odour-bait technique (OBT) in 1992 after using annual aerial sprays for 20 years, in view of its popularity among Tsetse Control authorities throughout Africa. Resurgence of trypanosomosis can be attributed to a general upsurge of the tsetse population and expansion of the tsetse-infested area from 5000–7000 km² to 11 500 km². This was probably due to failure to monitor and re-service approximately 25 000 deltamethrin-impregnated targets deployed around the Okavango Delta under OBT. These targets became inaccessible as a result of heavy floods in the delta and adjoining areas in 1999.
Lack of reliable and suitable transport also restricted access to targets. Apart from this, Ngamiland has a fairly naive cattle population after restocking a little over 3 years ago from nagana-free areas as a result of an outbreak of contagious bovine pleuropneumonia in the area. Exposure of such animals to a fairly large population of vector flies, besides stress of overcrowding and limited grazing areas on account of floods and heavy rains, might have exacerbated the severity of trypanosomosis.

The Government of Botswana approved and implemented a 3-phase integrated tsetse control strategy in September, 2000 to avoid the recurrence of this disease. In the 1st phase curative and chemoprophylactic drugs such as diminazene aceturate and isometamidium chloride were used to treat all animals in endemic areas of Ngamiland district. The treatment was repeated twice because the prophylactic effects of these drugs are limited. It proved very effective in curtailing bovine mortality due to nagana. In the 2nd phase scheduled to start at the end of May 2001, a combination of OBT and aerial spraying with endosulfan will be put into practice for the next 2–3 years. Aerial sprays will cover highly-infected areas between Tubu/Entsha and Beetsha, and the area around Mombo with the highest tsetse density. The toxicity of endosulfan to young fish in shallow water as well as adverse effects of overdosing, overspraying and contamination of the environment, if any, will be monitored by a team of experts. The 3rd phase includes the sterile insect technique (SIT), whereby sterile male tsetse flies will be released across wide areas of the delta. SIT will be used if eradication of tsetse is not achieved by OBT and aerial spraying.

ACKNOWLEDGEMENTS

We thank Dr M V Raborokgwse, Director, Department of Animal Health and Production, Ministry of Agriculture, Botswana, for granting permission to publish this paper, and officers at the Maun and Shakawwe veterinary districts offices and the Tsetse Control Division for their assistance in the collection of blood samples.

REFERENCES

3. Boyt, W P 1986 Guildepratique pour le diagnostic, le traitement et la pr évention de la trypa
nosomiasise animale africaine. Food and Agricultural Organisation, Rome
4. Brander G C, Pugh D M, Bywater R J, Jenkins W L 1991 Veterinary applied pharma
coLOGY and therapeutics (5th edn). ELBS/ Bailliere Tindall, London
sis tool for detecting trypanosomes in naturally infected cattle in Burkino Faso. Veterinary Parasitology 86: 95–103